
January 2009 www.stsc.hill.af.mil 11

Overwatch Systems focuses on the
development and fielding of multi-

discipline data analysis software systems.
Areas of expertise include data fusion, all-
source analysis, signal intelligence acquisi-
tion and analysis, sensor network technol-
ogy, and visualization. Starting in 2003 and
continuing through 2007, the company
transitioned to an SPL approach, produc-
ing the OIC product line, of which all new
applications and systems are members.
Multiple systems have been fielded as
members, including a Signal Intelligence
(SIGINT) collection and analysis system
and an all-source analysis system.

During the Overwatch Systems transi-
tion, the company desired more informa-
tion related to the application of SPL
practices in business environments similar
to our own: fulfilling government con-
tracts by delivering members of an SPL.
The goal of this article is to make such
information available so that introducing
this approach can be easier in the future.

Software Product Lines
As defined by the Software Engineering
Institute (SEI), an SPL is a set of soft-
ware-intensive systems sharing a com-
mon, managed set of features that satis-
fy the specific needs of a particular mis-
sion and that are developed from a com-
mon set of core assets in a prescribed
way [1]. In other words, an SPL consists
of a family of software systems that have
some common functionality and some
variable functionality. To take advantage
of the common functionality, reusable
assets (referred to as core assets) are
developed, which can be reused by dif-
ferent members of the family. Following
an SPL approach involves not only devel-
oping core assets but also focusing on
the systematic production and delivery of
the different member systems (or vari-
ants) of the SPL family.

OIC Background
In 2003, Overwatch Systems was in a
transition period. In previous years, a

large portion of the business was dedi-
cated to developing a large all-source
analysis system for a single customer.
This system consisted of approximately
10 million lines of code (LOC) and hun-
dreds of components. To produce solu-
tions for new customers, this large analy-
sis system was cloned, modified, and
extended to meet new requirements.
Often, this approach led to difficulties

caused by the complexity and dependen-
cies encountered while adapting a legacy
system to a new mission.

Simultaneously, Overwatch Systems
was beginning a large multi-year effort to
produce situation understanding and data
fusion capabilities for a second large cus-
tomer. Although rigid constraints were
imposed on the architecture and devel-
opment of this software, the company
made a commitment to create shared
value for both of the current customers
through the reuse of key components.

Transition to the SPL
Approach
Preliminary Steps
Based on a clear business case, the deci-
sion to transition to an SPL approach
was made by the CEO of the company.

From the beginning, the general manag-
er, chief architect, and vice president of
engineering were the champions of the
product line vision. Having strong sup-
port was critical to the successful SPL
creation and operation.

Transitioning affects all parts of a
business and introduces many risks.
Clements and Northrop [1] identify 29
business practice areas with activities that
are essential for product line success (e.g.,
architecture definition, process defini-
tion, funding, etc.). These practice areas
cover all aspects of the business includ-
ing software engineering, technical man-
agement, and organizational manage-
ment. During this preliminary transition,
a particular focus was put on the practice
areas of mining existing assets and train-
ing. Although these two practice areas
were critical to the transition, a lack of
focus on other practice areas, such as
architecture definition, funding, and
structuring the organization, caused
many problems that are discussed later in
this article.

To reduce the risks, an incremental
transition plan was created. This ap-
proach introduced product line concepts
to various practice areas incrementally
and relied on the creation of core assets
to be realized as part of ongoing devel-
opment activities. A specific customer
system was targeted to be the first mem-
ber of the SPL. This target provided
motivation by creating a sense of
urgency and forcing employees to focus
on the product line transition instead of
focusing only on normal daily issues.

The transition plan was derived from
the SPL Factory Pattern, which is a com-
posite pattern for an entire product line
organization [1]. Activities that took
place in this preliminary stage included
scope definition, market analysis, a tech-
nical probe, training on product line con-
cepts, and a determination of funding
and organizational models. The technical
probe was used to assess the current state
of the organization in the context of a

Experiences With Software Product Line Development 

Overwatch Systems recently transitioned to a software product line (SPL) approach. Using its SPL, Overwatch Systems pro-
vides both software products and custom software system development in the domain of intelligence planning, collection, and
analysis to the U.S. DoD and intelligence community. This article describes the approach taken in Overwatch Systems’ tran-
sition, describes the product line architecture that is a key to the Overwatch Intelligence Center (OIC) SPL, and provides the
lessons learned during the transition. 

Dr. Paul Jensen
Overwatch Systems

“Following an SPL
approach involves not
only developing core

assets but also focusing
on the systematic

production and delivery
of the different member

systems of the
SPL family.”



Engineering for Production

12 CROSSTALK The Journal of Defense Software Engineering January 2009

product line transition and to track the
progress of the transition over time. The
training consisted of seminars for
employees and required reading materi-
als, such as [1]. The seminars covered
product line concepts and how practice
areas would be affected by the transition.
The training was provided by the SEI’s
Paul Clements, the vice president of
engineering, and the chief architect. This
mixture of training provided both an
expert view on SPLs and a description of
product line practice areas specific to
Overwatch Systems.

Based on our experience, the devel-
opment of the funding model and orga-
nizational model are particularly impor-
tant for success with an SPL approach.
The organizational model that Over-
watch Systems initially implemented was
based on a division of domain engineer-
ing activity where reusable assets are cre-
ated and customer-specific engineering
activity in which the assets are assembled,
customized, and extended. This model,
as described in [2], appeared to be opti-
mal. A domain engineering group was
formed to produce reusable assets.
Multiple customer-specific engineering
groups would use those assets for cus-
tomer system development. The funding
for the domain engineering group was
initially derived from internal Overwatch
Systems funds. The plan was that these
funds, occasionally augmented with
funds from customer projects, would
fully support the employees required for
domain engineering.

Two major problems were encoun-
tered in operations that caused the com-
pany to eventually change this funding
and organizational model. The first prob-
lem was that difficulties were encoun-
tered in funding a domain engineering
group at a constant rate. Internal funds
were insufficient to pay for a majority of
the core asset development that was
required. Fluctuations in customer pro-
ject funding caused unmanageable fluc-
tuations in the size of the domain engi-
neering group. The second problem was
that experts in certain technical areas
were continuously pulled from the
domain engineering group to the cus-
tomer-specific engineering group to fill
critical gaps.

In the second year of the transition,
Overwatch Systems changed its organi-
zational and funding model in order to
address these problems. The company
transitioned to an organizational model
described as mixed responsibility [2], in
which customer-specific engineering
groups shared responsibility for develop-

ing reusable core assets. The lesson
learned from this change is to ensure,
through analysis and accurate estimation,
that the funding and organizational
model chosen for an SPL approach
aligns with the demands and characteris-
tics of one’s business.

Starting Out
The initial domain engineering group
consisted of eight engineers and would
grow to more than 25 before the organi-
zation transition. The domain engineer-
ing group’s mission was to create the nec-
essary number of core assets in a new
architecture that would allow the compa-
ny to begin making systems that are
members of the SPL.

The initial SPL architecture was
developed and focused primarily on the
dependencies between components in
the product line, emphasizing specific
rules that governed what types of depen-
dencies were allowed between product
line assets. The architecture neglected to
address issues related to the product
engineering or assembly aspects of the
products and did not define much of the
infrastructure that, as the company dis-
covered later, is needed to operate a
product line efficiently.

Drawing from a legacy software base-
line consisting of approximately 10 mil-
lion LOC, the core asset mining process
began. Several issues were encountered
and had to be overcome. The company
lacked experience in performing domain
analysis, which is the process of deter-

mining the commonality and variability
across all current customers and poten-
tial customers. Consequently, domain
analysis was not performed adequately
and the deciding factor in determining
what assets to mine and what variations
to implement became the requirements
of the first customer system to use the
product line. Domain analysis processes
had to be determined, tested, and applied
to overcome this issue.

The architecture and infrastructure
developed were not sufficiently designed
to support an SPL. Insufficient thought
was put into determining how the core
assets would be assembled and how the
architecture could exploit commonality.
As the core asset base expanded, many
cases were observed where commonality
was not being taken advantage of and
software components were not well inte-
grated. To address this problem, a
revised architecture was created later.

The company did not possess exper-
tise with variations in non-software core
assets (e.g., related artifacts such as
requirements and test procedures). The
mining process started before the
processes and tool modifications needed
to support non-software core assets were
executed. The result was an inadequate
representation of variation and com-
monality, and a lack of variation depen-
dency in these artifacts.

Despite these difficulties, approxi-
mately 4.5 million LOC were mined and
new software components were devel-
oped, resulting in approximately 200 soft-
ware core assets. These core assets pro-
vided a range of capabilities in the all-
source and SIGINT intelligence domains,
including data ingestion, management,
processing, fusion, as well as geospatial,
temporal, and relational visualization. In
2005, the first customer system was made
using the OIC’s SPL.

Course Correction
During the Starting Out phase of the tran-
sition, it became clear that although
products could be produced from the
product line, the architecture and infra-
structure would not be sufficient in the
long term. After a technical analysis, a
decision was made to implement a new
product line architecture.

The new architecture, called Viper,
focused on creating composite applica-
tions from product line assets. Com-
posite applications are formed by com-
bining functionality drawn from several
different sources within a service-orient-
ed architecture and packaging them
together into a single-user interface or

“The initial SPL
architecture was

developed and focused
primarily on the

dependencies between
components in the

product line, emphasizing
specific rules that

governed what types of
dependencies were

allowed between product
line assets.”



Experiences With Software Product Line Development 

January 2009 www.stsc.hill.af.mil 13

work process. In the context of an SPL,
a composite application is a member of
the product line composed or assembled
from the reusable software assets.

Viper implements several aspects of
service-oriented architecture, including a
high degree of core asset decoupling.
The architecture introduced the defini-
tion and control of interfaces and asset
and data discovery. A common messag-
ing mechanism, or service bus, was intro-
duced to allow software core assets to
publish and subscribe to objects, events,
and interfaces. A common object model
was added to impose object commonali-
ty on all software core assets regardless
of their origin. A single-user interface
was introduced to allow for the assembly
of a system that can be presented to the
user as a single application instead of
numerous applications with different
user interfaces. The unified-user interface
also enabled an increase in the common-
ality for functionality such as with editing
data (i.e., a single data editor was used
instead of multiple data editors). Lastly,
the architecture improved product engi-
neering support by providing SPL-
attached processes via a Software
Development Kit (SDK). The SDK
enabled those performing the construc-
tion of product line systems to use
automation tools for certain aspects of
the system assembly process.

The Overwatch Intelligence
Center
The first version of the Viper architec-
ture and SDK were completed in 2007
and serves as the core of the OIC SPL.
All development relevant to the product
line—including legacy code mining, new
development, and third-party code inte-
gration—uses the Viper architecture.
Legacy components are being migrated
from the original product line architec-
ture to the Viper architecture.

In its current state, the OIC contains
core assets related to intelligence planning,
collection, analysis, visualization, and data
management. The specific analysis areas
addressed by the product line include
SIGINT, Human Intelligence, and data
fusion (e.g., data correlation, aggregation,
and threat estimation). These core assets
are designed to be deployed either in the
Viper product line architecture or integrat-
ed directly into a customer’s enterprise
architecture.

The product line consists of approxi-
mately 270 software core assets with a
corresponding number of associated
core asset artifacts. The 270 core assets

are composed of approximately 900
components and 4.7 million LOC. The
origin of the core assets include a legacy
code base, newly developed software,
and acquired third-party components.

Achievements and
Improvements
In spite of missteps at the inception of
the effort, there have been several
achievements and improvements real-
ized. Two licensed products have been
created as members of the product line:
an all-source analysis and a SIGINT
product. These products are pre-config-
ured collections of core assets that are
customized to individual customer speci-
fications.

The all-source analysis product pro-
vides data management, link analysis, text
extraction, and geospatial capabilities. The
first version of this product, based on the
original SPL architecture, was developed in
less than 90 days. The company estimated
that this improvement got products to-
market approximately 2.5 times quicker.

The SIGINT product provides col-
lection, analysis, and processing capabili-
ties. The product has been delivered,
with modifications and extensions, to
two customers thus far. Software reuse
between the two customers is approxi-
mately 70 percent. There has also been
interest from a government customer to
acquire these capabilities as an SPL
instead of as individual products.

More than 10 customer systems have
been completed that are members of the
OIC SPL. Software reuse (within these
deliveries) is estimated to range between
40 and 70 percent. The software that
implements the Viper architecture and
SDK have been sold to a U.S. govern-
ment customer and is serving as the basis
for integrating Overwatch Systems, gov-
ernment-developed, and other contractor
software. In 2007, the OIC was nominat-
ed for inclusion into the SEI’s SPL Hall
of Fame, which exists to acknowledge
excellence in the field and influence in
the software engineering community.
Metrics to measure other improvements,
such as product quality, system cost dif-
ferential, integration speed, and customer
satisfaction are not yet available, but
anecdotal improvements have been
noted in these areas as well.

Economics
The SEI provides an economic model,
called the Structure Intuitive Model for
Product Line Economics, that can be
used to determine if a product line

approach is economically positive for a
particular organization [3]. Typically, the
benefits outweigh the costs (that is, a
positive return on investment) of a prod-
uct line approach with the third system
built from an SPL. Using this as the eco-
nomic model, Overwatch Systems’ expe-
rience is in line with the typical return on
investment. From 2003 to 2007, Over-
watch Systems’ revenue nearly tripled. It
is believed by management that this
growth could not have been achieved
without the speed and reduced costs
enabled by an SPL approach.

Lessons Learned
During the transition, a number of
lessons were learned:
• Support of organization leader-

ship is critical. At many points dur-
ing the transition, if not for the sup-
port of senior management—both in
terms of funding and organization
direction—the effort would not have
succeeded. In the case of Overwatch
Systems, the general manager, chief
architect, and vice president of engi-
neering are product line champions.

• An architecture specifically de-
signed to support a product line is
essential. Overwatch Systems’ first
attempt at a product line architecture
was rooted in our legacy applications.
It failed to properly address certain
quality attributes such as modifiabili-
ty, configurability, and extensibility in
the architecture. These attributes were
later addressed with the Viper archi-
tecture. More infrastructure design
and development should have been
done before the mining of core assets
began. A proper architecture evalua-
tion, as described by the SEI’s
Architectural Trade-off Analysis Meth-
od, is strongly recommended to uncov-
er product line architecture deficien-
cies [4].

• It is important to address product
line requirements in support tools
and processes early in the effort.
Overwatch Systems attempted to
change these tools and processes
(e.g., requirements management) in
parallel with creating core assets. The
result was tools that didn’t meet
requirements, frustration for product
line users, and software artifacts that
didn’t optimally address commonality
and variation. Special focus should be
made on the requirements for these
tools, which are related to creating
and maintaining relationships be-
tween variation points manipulated in
each tool. One way to accomplish this



Engineering for Production

14 CROSSTALK The Journal of Defense Software Engineering January 2009

is to determine how the selection of a
variation point in requirements is
communicated to the related variation
point in test procedures.

• Early in the transition, determine
the process for domain analysis
that best fits your organization.
Overwatch Systems arrived at a fast,
lightweight process, centered on the
creation of a high-level architecture
artifact that can be performed in the
small amount of time that is typically
available in our projects. To deter-
mine our process, the company exam-
ined and used concepts from several
references including [5, 6, and 7].

• Put processes in place to perform
domain analysis activities as early
in the project life cycle as possible.
Overwatch Systems creates a domain
analysis document as early as the pro-
posal stage of a project and it evolves
during the project life cycle. This
approach ensures that all project par-
ticipants are in agreement with re-
spect to the project’s relationship to
the product line.

Conclusion
A product line approach to developing
software for government customers is
viable and holds tremendous potential for
shortening time-to-market and delivering
a better value proposition. Adopting a
product line approach impacts engineer-
ing, technical management, and organiza-
tional management aspects of a business
and can be adopted by a company like
Overwatch Systems in the span of a few
years. When executing a transition to a
product line approach, special attention
should be paid to the product line archi-
tecture, the tools and processes that must
be modified to support the product line,
and techniques related to domain analysis.

In spite of missteps during the transi-
tion to a product line approach, Over-
watch Systems has successfully produced
the OIC SPL. The company has created
and delivered multiple software systems
from its product line to multiple defense
organizations, allowing the government
to receive the benefits that a product line
approach promises, including decreased
development time and reduced costs
from planned reuse.u

References
1. Clements, Paul, and Linda Northrop.

Software Product Lines: Practices and
Patterns. SEI Series in Software Engi-
neering. Addison-Wesley Professional,
2001.

2. Bosch, Jan. Software Product Lines:

Organizational Alternatives. Proc. of
the 23rd International Conference on
Software Engineering. Toronto, 2001:
91-100.

3. Clements, Paul C., John D. McGregor,
and Sholom G. Cohen. “The Struc-
tured Intuitive Model for Product
Line Economics (SIMPLE).” SEI,
Carnegie Mellon University. Technical
Report CMU/SEI-2005-TR-003. Feb.
2005 <www.sei.cmu.edu/publications
/documents/05.reports/05tr003/05
tr003.html>.

4. Clements, Paul, Rick Kazman, and
Mark Klein. Evaluating Software Ar-
chitecture: Methods and Case Studies.
Addison-Wesley Professional, 2002.

5. Kang, Kyo C., et al. “Feature-Oriented
Domain Analysis Feasibility Study.”
SEI, Carnegie Mellon University,
1990. Technical Report CMU/SEI-
90-TR-021.

6. Cohen, Sholom G., et al. “Application
of Feature-Oriented Domain Analysis
to the Army Movement Control Do-
main.” SEI, Carnegie Mellon Univer-
sity. Technical Report CMU/SEI-91-
TR-28, ESD-91-TR-028. June 1992
<ftp://ftp.sei.cmu.edu/pub/docu
ments/91.reports/pdf/tr28.91.pdf>.

7. Gomaa, Hassan. Designing Software
Product Lines With UML. Addison-
Wesley Professional, 2004.

About the Author

Paul Jensen, Ph.D., is
the chief architect for
Overwatch Systems, Tac-
tical Operations. Over-
watch Systems makes
intelligence planning, col-

lection, analysis, and visualization soft-
ware for the DoD and other government
agencies. He has 14 years of experience
in designing and building complex soft-
ware systems. At Overwatch Systems,
Jensen has served as an architect for
numerous complex software-intensive
projects, led the adoption of an SPL
approach to development, and led the
adoption of product innovation process-
es. He has a doctorate in physics from
the University of Texas at Austin.

Overwatch Systems
P.O. Box 91269
Austin,TX 78709-1269
Phone: (512) 358-2600
E-mail: paul.jensen@overwatch.

textron.com

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

COMING EVENTS

March 2-5
25th Annual Test and Evaluation

National Conference
Atlantic City, NJ

www.ndia.org/meetings/9910

March 2-6
8th International Conference on Aspect-

Oriented Software Development
Charlottesville, VA

www.aosd.net/2009/

March 4-5
TechNet Tampa 2009

Tampa, FL
www.afcea.org/events/tampa/09/

Introduction.asp

March 22-27
2009 Spring Simulation

Multi-Conference

San Diego, CA
www.scs.org/confernc/

springsim/
springsim09/cfp/
springsim09.htm

March 23-26
SEPG 2009 North America

San Jose, CA
www.sei.cmu.edu/sepgna/2009/

April 20-23 
21st Annual Systems and Software

Technology Conference

Salt Lake City, UT
www.sstc-online.org


